If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-246=0
a = 3; b = 6; c = -246;
Δ = b2-4ac
Δ = 62-4·3·(-246)
Δ = 2988
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2988}=\sqrt{36*83}=\sqrt{36}*\sqrt{83}=6\sqrt{83}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{83}}{2*3}=\frac{-6-6\sqrt{83}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{83}}{2*3}=\frac{-6+6\sqrt{83}}{6} $
| 6=2(z-5) | | 3x4+x=12 | | 4x=-2x-18 | | j-3/4=3 | | 2k^2+13k+18=0 | | 2k^2+13+18=0 | | 2x-3/3-x-5/7=3x-2x-9/21 | | 1,5x+2=-1,4 | | 3x-(10x+7)-2x(2x-12x+1)+3=8x+3 | | f+9/3=4 | | 7m-19=2 | | h-9.79=1.21 | | -14z-(-11z)+-9=0 | | 3/2x+2=-7/5 | | h-19.7=-1.7 | | 11x–9=13x+7 | | 11x–9=13x+7 | | -6z-(-5z)=8 | | 11u-6u-5=5 | | n/3=-4.3 | | 3=3(z-8) | | c+4/2=3 | | 20f-20=18f | | q+7/3=3 | | 8.79=3f | | 5(x+1)=-2x+7 | | w(3w-2)-21=0 | | -5w+20=-15w | | g-7/2=1 | | 2z+2z+5+2z= | | 9x–13=7x+15 | | s/2=1.82 |